3x^2+4x=150

Simple and best practice solution for 3x^2+4x=150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4x=150 equation:


Simplifying
3x2 + 4x = 150

Reorder the terms:
4x + 3x2 = 150

Solving
4x + 3x2 = 150

Solving for variable 'x'.

Reorder the terms:
-150 + 4x + 3x2 = 150 + -150

Combine like terms: 150 + -150 = 0
-150 + 4x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-50 + 1.333333333x + x2 = 0

Move the constant term to the right:

Add '50' to each side of the equation.
-50 + 1.333333333x + 50 + x2 = 0 + 50

Reorder the terms:
-50 + 50 + 1.333333333x + x2 = 0 + 50

Combine like terms: -50 + 50 = 0
0 + 1.333333333x + x2 = 0 + 50
1.333333333x + x2 = 0 + 50

Combine like terms: 0 + 50 = 50
1.333333333x + x2 = 50

The x term is 1.333333333x.  Take half its coefficient (0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
1.333333333x + 0.4444444442 + x2 = 50 + 0.4444444442

Reorder the terms:
0.4444444442 + 1.333333333x + x2 = 50 + 0.4444444442

Combine like terms: 50 + 0.4444444442 = 50.4444444442
0.4444444442 + 1.333333333x + x2 = 50.4444444442

Factor a perfect square on the left side:
(x + 0.6666666665)(x + 0.6666666665) = 50.4444444442

Calculate the square root of the right side: 7.102425251

Break this problem into two subproblems by setting 
(x + 0.6666666665) equal to 7.102425251 and -7.102425251.

Subproblem 1

x + 0.6666666665 = 7.102425251 Simplifying x + 0.6666666665 = 7.102425251 Reorder the terms: 0.6666666665 + x = 7.102425251 Solving 0.6666666665 + x = 7.102425251 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = 7.102425251 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = 7.102425251 + -0.6666666665 x = 7.102425251 + -0.6666666665 Combine like terms: 7.102425251 + -0.6666666665 = 6.4357585845 x = 6.4357585845 Simplifying x = 6.4357585845

Subproblem 2

x + 0.6666666665 = -7.102425251 Simplifying x + 0.6666666665 = -7.102425251 Reorder the terms: 0.6666666665 + x = -7.102425251 Solving 0.6666666665 + x = -7.102425251 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = -7.102425251 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = -7.102425251 + -0.6666666665 x = -7.102425251 + -0.6666666665 Combine like terms: -7.102425251 + -0.6666666665 = -7.7690919175 x = -7.7690919175 Simplifying x = -7.7690919175

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.4357585845, -7.7690919175}

See similar equations:

| 5a+-4a= | | 4x^2+3x=-5 | | 3(f+3)=(9+f)+2 | | 14b=5 | | .75x+1=-.5 | | 3x-2y=x-z | | 7.25z=-137.75 | | 50=x+30 | | 6(c+6)=84 | | 7(v-4)-2=-3(-6v+9)-5v | | 3/5(2x+7)=9/4 | | 6a-3b+2(b+5a)= | | (2/3*13/2)+(3/2*13/2)=1/3 | | 10x+5=32+7x | | 2/3(m+2)=4/5 | | 12p=16(p-8) | | 270=45h | | 5(4+t)-3(t+1)= | | ln(6)+ln(x-1)=12 | | (2/3*2/13)+(3/2*2/13)=1/3 | | 9(p-4)-8=5p | | 15x-4+6x-9= | | 16x-4+6x-9= | | 2r-8=-41 | | (3/2*11/2)+(1/3*11/2)=1/3 | | h=8t^2+32t+40 | | (3/2*2/11)+(1/3*2/11)=1/3 | | 5q=95 | | 3b+6b=9b | | (3x-5)*4x=3x+13 | | -15=16 | | 1/2(8r+10)=17 |

Equations solver categories